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ABSTRACT

Tropical cyclone intensification processes are explored in six high-resolution climate models. The analysis

framework employs process-oriented diagnostics that focus on how convection, moisture, clouds, and related

processes are coupled. These diagnostics include budgets of column moist static energy and the spatial variance

of column moist static energy, where the column integral is performed between fixed pressure levels. The latter

allows for the quantification of the different feedback processes responsible for the amplification of moist static

energy anomalies associated with the organization of convection and cyclone spinup, including surface flux

feedbacks and cloud-radiative feedbacks. Tropical cyclones (TCs) are tracked in the climate model simulations

and the analysis is applied along the individual tracks and composited over many TCs. Two methods of com-

positing are employed: a composite over all TC snapshots in a given intensity range, and a composite over all TC

snapshots at the same stage in the TC life cycle (same time relative to the time of lifetimemaximum intensity for

each storm). The radiative feedback contributes toTCdevelopment in all models, especially in storms of weaker

intensity or earlier stages of development. Notably, the surface flux feedback is stronger in models that simulate

more intense TCs. This indicates that the representation of the interaction between spatially varying surface

fluxes and the developing TC is responsible for at least part of the intermodel spread in TC simulation.

1. Introduction

The study of tropical cyclones (TCs) in climatemodels

has long been difficult because of the conflict between

the high resolution necessary to accurately simulate TCs

and the need to perform long, global simulations. In

recent years, however, enormous progress has beenmade

in the ability of general circulation models (GCMs) to

simulate TCs from subseasonal to seasonal and longer

time scales (Camargo and Wing 2016). Global forecast

models have become a more reliable source of tropical

cyclone genesis guidance (e.g., Halperin et al. 2016) while

climate models have improved such that they can re-

produce the TC climatology with some fidelity (e.g.,
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Zhao et al. 2009; Wehner et al. 2014) and exhibit some

skill in seasonal forecasting (Zhang et al. 2016; Vecchi

et al. 2014; Murakami et al. 2015, 2016; Vitart et al. 2010;

Chen and Lin 2011, 2013). This is largely a result of al-

gorithmic and computational advances that have allowed

for the use of high horizontal resolutions that sub-

stantially improve the simulation of TC climatology,

structure, and intensity. However, biases remain. For

example, low-resolution GCMs tend to simulate too few

TCs globally (Camargo 2013), and even 50-km high-

resolution models are generally not able to simulate the

most intense storms (Shaevitz et al. 2014).While decreasing

the model grid spacing can improve the low intensity bias

(Manganello et al. 2012; Wehner et al. 2014; Murakami

et al. 2015), it does not do so uniformly (Roberts et al.

2015), and even in models with the same resolution there

can be substantial differences in their ability to simulate

TCs (Shaevitz et al. 2014). This suggests that resolution is

not the only factor controlling model simulation of TCs. In

particular, TCs are tightly coupled to clouds and convec-

tion, so TC frequency, intensity, structure, and interannual

variability are strongly sensitive to the details of convective

parameterizations (e.g., Reed and Jablonowski 2011;

Murakami et al. 2012; Zhao et al. 2012; Kim et al. 2012;

Duvel et al. 2017). These biases contribute to uncertainty

regarding future projections of TC activity (Walsh et al.

2016), as such projections dependon the ability ofGCMs to

reliably capture the features of TC activity.

Our objective is to develop process-oriented diagnostics

to identify model characteristics that are responsible for

proper simulation of TCs and that will explain the inter-

model spread in TC frequency and intensity distributions.

These diagnostics go beyond simply quantifying the sim-

ulated TC activity and focus on how simulated TCs

respond to their environments, rather than how the large-

scale environment itself is simulated across different

models. Our study builds on the work of Kim et al. (2018),

which introduced a suite of diagnostics that provided

deeper insights into the representation of physical pro-

cesses that are responsible for the simulation of TCs in

GCMs. The Kim et al. (2018) diagnostics consist of azi-

muthal averages of dynamic and thermodynamic fields

around the storm center and identify physical processes

related to the interaction between convection, moisture,

and circulation that can lead to intermodel differences in

simulated TCs. Of the threemodels examined, they found

that the one with the most intense storms had the most

precipitation near the composite TC center, the strongest

sensitivity of convection to moisture, and the strongest

contrast in relative humidity and surface latent heat flux

between the inner and outer region of the composite

TCs. These results indicate the importance of moisture–

convection coupling and feedbacks between the surface

latent heat flux and convection. Here, we develop and

apply an additional, related set of diagnostics to further

analyze the role of these and other processes in simulated

TCs, in six high-resolution climate models.

The paper is organized as follows. We provide a brief

description of the six high-resolution models used in this

study in section 2 and describe our diagnostics and anal-

ysis methodology in section 3. The application of these

diagnostics to the sixmodelswill be described in section 4,

with a discussion of their implications in section 5. We pro-

vide a summary of the results and conclusions in section 6.

2. Model simulations

a. Models

We explore TC intensification processes in six high-

resolution climate model long-term (.20 year) histori-

cal simulations (Table 1). Several of these simulations

were also examined in complementary studies by Kim

et al. (2018) and Y. Moon et al. (2019, manuscript sub-

mitted to J. Climate). This six-member model ensemble is

TABLE 1. Description of model simulations.

Model Resolution Dynamical core Convection scheme Tracking algorithm Other notes

HiRAM ;50 km Finite volume

cubed sphere

Bretherton et al.

(2004)

Zhao et al. (2009) Other physics from

GFDL AM2

AM2.5 ;50 km Finite volume

cubed sphere

Relaxed Arakawa–

Schubert

Murakami et al. (2015),

Harris et al. (2016)

Other physics from

GFDL AM2

FLOR ;50 km Finite volume

cubed sphere

Relaxed Arakawa–

Schubert

Murakami et al. (2015),

Harris et al. (2016)

Coupled to 18 ocean,
SST nudged to obs

CAM-FV ;25 km Finite volume

latitude–longitude

Park and Bretherton

(2009), Zhang and

McFarlane (1995)

Zhao et al. (2009) NCAR–DOE CAM5

CAM-SE ;25 km in North

Atlantic, ;100 km

global

Spectral element Park and Bretherton

(2009), Zhang and

McFarlane (1995)

Ullrich and Zarzycki

(2017), Zarzycki

et al. (2017)

NCAR–DOE CAM5

GEOS ;50 km Finite volume

cubed sphere

Relaxed Arakawa–

Schubert

Camargo and Zebiak

(2002)

MERRA-2 AMIP
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an ‘‘ensemble of opportunity’’ based on available simula-

tions, rather than a coordinated intercomparison.

Three of the models were developed at the Geo-

physical Fluid Dynamics Laboratory (GFDL) Atmo-

sphereModel version 2.5 (AM2.5; Delworth et al. 2012),

High Resolution Atmospheric Model (HiRAM; Zhao

et al. 2009), and Forecast-Oriented Low Ocean Reso-

lution (FLOR; Vecchi et al. 2014) version of Coupled

Model 2.5 (CM2.5; Delworth et al. 2012). AM2.5 and

HiRAM are atmosphere-only simulations forced with

observed sea surface temperatures from HadISST1.1

(Rayner et al. 2003), while FLOR is a coupled simula-

tion in which SSTs are calculated interactively by its

oceanic component and nudged toward the observed

SSTs with a 5-day nudging time scale. This ensures the

model mean state remains close to that observed. The

ocean component of FLOR has 18 3 18 horizontal reso-
lution, zooming to 1/38 meridional spacing near the

equator with 50 vertical levels, and an ocean–atmosphere

coupling interval of 1h. The atmosphere component

of FLOR is AM2.5. All three GFDL models are run

with 50-km horizontal resolution and 32 vertical levels in

the atmosphere and use the same finite volume dynamical

core on a cubed-sphere grid (Putman and Lin 2007), with

the same divergence damping coefficient (Zhao et al.

2012), the same time steps, and the same physics–

dynamics coupling interval (the gravity wave, advec-

tive, and physics time steps are 200, 600, and 1200 s, re-

spectively, and the radiation is called every 3 h). AM2.5

and FLOR use the same relaxed Arakawa–Schubert

convection scheme (Moorthi and Suarez 1992), while

HiRAM uses a version of the Bretherton et al. (2004)

shallow convection scheme, modified to simulate both

deep and shallow convection (Zhao et al. 2012); all other

physics packages are the same (Anderson et al. 2004).

Therefore, AM2.5 and FLOR differ only in that FLOR

is coupled while AM2.5 is atmosphere-only, and AM2.5

and HiRAM differ only in their convection schemes.

Two of the additional atmosphere-only models we

analyze are versions of the National Center for Atmo-

spheric Research (NCAR)–Department of Energy (DOE)

Community AtmosphereModel, version 5 (CAM5; Neale

et al. 2012) with both the spectral element (CAM-SE;

Dennis et al. 2012) and the finite volume (CAM-FV;

Lin and Rood 1996, 1997) dynamical cores. CAM-SE is

configured with the variable-resolution option (Zarzycki

et al. 2014), with 0.258 grid spacing over the North At-

lantic and 18 grid spacing elsewhere as in Zarzycki et al.

(2017). The raw data are remapped to a globally uniform

0.258 latitude–longitude grid, although we restrict our

analysis to theNorthAtlantic where the native resolution

is highest. CAM-FV is configured with global 0.258 grid,
similar to the work of Wehner et al. (2014). CAM5

utilizes 30 vertical levels with a model top of approxi-

mately 2hPa. The prescribed SST and sea ice boundary

dataset for both simulations is provided from Hurrell

et al. (2008). Both CAM-SE and CAM-FV use similar

versions of the CAM5 physics parameterizations, including

the same deep (Zhang and McFarlane 1995) and shallow

convective (Park and Bretherton 2009) schemes,

moist boundary layer turbulence scheme (Bretherton and

Park 2009), andRapidRadiativeTransferModel forGCMs

(RRTMG;Mlawer et al. 1997) scheme. Therefore, CAM-

SE andCAM-FVdiffer primarily in their dynamical cores,

which has previously been shown to impact the simulation

of TC climatology in the model (Reed et al. 2015).

The sixth atmosphere-only model simulation we an-

alyze is one member of the M2-AMIP [for Modern-Era

Retrospective Analysis for Research and Applications,

version 2 (MERRA-2; Gelaro et al. 2017) Atmospheric

Model Intercomparison Project (AMIP)] set of simula-

tions (Collow et al. 2017, 2018) performed with the

NASA Goddard Earth Observing System Model ver-

sion 5, version 5.12.4 (GEOS; Rienecker et al. 2008;

Molod et al. 2015). This version of the atmosphere

component of GEOS is the same model that was used

for MERRA-2, the most recent NASA reanalysis data

product, but the simulation we analyze is a free-running

version of the model initialized in November 1979 and

driven by the MERRA-2 SST and sea ice boundary con-

ditions (Bosilovich et al. 2015). GEOS employs a finite-

volume dynamical core (Putman and Lin 2007) with a

c180 cubed-sphere grid (an approximate horizontal reso-

lution of 50km), which is then spatially interpolated to a

0.6258 3 0.58 longitude–latitude grid. The native model

vertical grid has 72 terrain-following hybrid-eta levels.

GEOS employs a relaxed Arakawa–Schubert convection

scheme (Moorthi and Suarez 1992) and parameterizations

for longwave (Chou and Suarez 1994) and shortwave

(Chou and Suarez 1999) radiation; other details on the

physics packages can be found in Molod et al. (2015).

b. TC detection and tracking

TC-like vortices (which we refer to simply as ‘‘TCs’’)

are detected and tracked from the model fields using

standard tracking algorithms from eachmodeling group,

which produce, for each TC, a time series of the TC’s

center longitude and latitude, minimum sea level pres-

sure, and maximum wind speed corrected to a surface

(10m) value. We refer to the maximum surface wind

speed as the TC ‘‘intensity.’’ Each tracked TC has an

intensity at each snapshot along its track as well as a

lifetime maximum intensity (LMI), which is the maxi-

mum intensity found at any time along its track.

The TCs in the HiRAM simulation are tracked using

the routine described in Zhao et al. (2009), which is based
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on Vitart et al. (1997, 2003) and Knutson et al. (2007).

This algorithm locates grid pointswith an 850-hPa relative

vorticity maximum, local sea level pressure minimum,

and warm core, and tracks the storm by searching for a

vortex in the next snapshot within a distance of 400km

and connecting the snapshots. It requires that storms last

at least 3 days and have an intensity greater than 17ms21

during at least 3 (not necessarily consecutive) days.

The tracking scheme used in AM2.5 and FLOR is

similar to that used in HiRAM and is described in

Murakami et al. (2015) and Harris et al. (2016). This

algorithm uses local sea level pressure minimum and a

warm core criteria to detect TCs and requires that

storms last at least 3 days, be warm core for at least

2 days, and have an intensity greater than 15.75m s21

during at least 36 h while the storm has a warm core.

The TCs in the CAM-SE simulation are tracked using

TempestExtremes (Ullrich and Zarzycki 2017; Zarzycki

et al. 2017), while the TCs in the CAM-FV simulation

are tracked using the dectection algorithm from Zhao

et al. (2009). TempestExtremes (Ullrich and Zarzycki

2017; Zarzycki et al. 2017) searches for a local minimum

in sea level pressure and a collocated local maximum in

geopotential thickness between the 300- and 500-hPa

levels (which indicates a warm core). Candidate cyclones

are then stitched together in time, with storms needing to

be equatorward of 408 latitude for at least 60h (not nec-

essarily consecutive), and separate trajectories that ter-

minate and begin within 12h and 108 of one another are

merged to eliminate double-counting of broken tracks.

The TCs in the GEOS simulation are tracked using

the Camargo and Zebiak (2002) tracking algorithm,

which has been widely applied to various global and

regional climate models (e.g., Camargo 2013). This al-

gorithm uses basin-dependent thresholds of low-level

vorticity, surface wind speed, and vertically integrated

temperature anomaly to detect TCs, then tracks the low-

level vorticity center forward and backward in time from

each point that has met the detection criteria. For this

study, we additionally require that the vortex have an

intensity greater than 15.2m s21 for 3 days (not neces-

sarily consecutive). If this threshold is not applied, the

Camargo and Zebiak (2002) algorithm detects many

more weak storms, which shifts the intensity distribution

in GEOS toward weaker wind speeds and increases the

sample size of total storms, but does not otherwise

have a significant impact on our results or conclusions

(shown in the online supplemental material).

3. Analysis methodology

While long-term simulations were performed, for

most models we only have high-frequency (6 hourly),

model level output available for two years, so we apply

our moist static energy budget analysis along individual

simulated tropical cyclone tracks during those two years.

Eight years, 1992–99, are analyzed for the CAM-SE

simulation, so that the number of TCs analyzed is

comparable to the other models, since we only analyze

TCs in the North Atlantic in CAM-SE, compared with

the global distribution of TCs in the other models. The

TC statistics in the several years analyzed are repre-

sentative of the model climatology, in each model. We

perform our analysis in 108 boxes centered on each TC

and following each TC. When making composites, we

exclude points over land and TCs that have moved

poleward of 308. The years examined and the number of

TCs analyzed from those years are shown in Table 2.

We compute budgets of column-integrated moist static

energy and the spatial variance of column-integrated

moist static energy. Moist static energy is approximately

conserved under moist adiabatic processes, and its col-

umn integral is unchanged by convection (Emanuel

1994). The analysis framework for the variance budget

was first developed by Wing and Emanuel (2014) to

understand the physical mechanisms of self-aggregation

of convection in idealized simulations. It has since been

applied to simulations of tropical convection in a variety

of idealized and realistic configurations (Arnold and

Randall 2015; Wing and Cronin 2016; Coppin and Bony

2015; Holloway andWoolnough 2016; Becker et al. 2017;

Holloway 2017) and to cloud-resolving model simula-

tions of tropical cyclones (Wing et al. 2016; Muller and

Romps 2018). Column-integratedmoist static energy ĥ is

given by

ĥ5
1

g

ðpb
pt

(c
p
T1 gz1L

y
q) dp , (1)

where pt is the pressure at the model top, pb is the

pressure at the bottom, q is the water vapor mixing ratio,

and all other variables have their usual meaning. We

perform our analysis on model levels where pb is set to

920 hPa and pt is set to the model top. We describe the

motivations for and implications of this choice in the

TABLE 2. Years and number of tropical cyclones (TCs) for which

moist static energy budget analysis is performed. Only TCs in the

North Atlantic are analyzed in CAM-SE.

Model Years analyzed No. of TCs

HiRAM 1984–85 203

AM2.5 1984–85 170

FLOR 1984–85 211

CAM-FV 1996–97 146

CAM-SE 1992–99 91

GEOS 1984–85 84
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appendix. The budget for column-integratedmoist static

energy is given by

›ĥ

›t
5F

k
1N

L
1N

S
2bu � =h , (2)

where Fk is the surface moist enthalpy flux, NL is the

column longwave radiative flux convergence, and NS is

the column shortwave radiative flux convergence. Each

of these terms [as well as advection, the last term on the

right-hand side of Eq. (2)] is a source or sink of ĥ. The

terms Fk, NL, and NS are output as temporal averages

(6-hourly for HiRAM, AM2.5, and FLOR, 3-hourly for

CAM-SE and CAM-FV, and 1-hourly for GEOS); we

average consecutive periods together to derive a value

centered around the time of the TC snapshot. The term

ĥ is computed as described above and in the appendix,

using instantaneous output at the time of the TC snap-

shot, and ›ĥ/›t is computed using a centered finite

difference. Given the uncertainties associated with cal-

culating the advection of moist static energy from offline

model output, we calculate the advective term as a re-

sidual from the rest of the budget. As Eq. (2) neglects

the tendency of kinetic energy and is therefore only an

approximation, this residual may include more than just

the advective term, as is discussed in more detail in the

appendix. All terms are computed at each grid point

within the 108 box centered on the TC (Villarini et al.

2014; Scoccimarro et al. 2014).

For each grid point, the contributions to the tendency

of the spatial variance of ĥ is given by

1

2

›ĥ02

›t
5 ĥ0›ĥ

0

›t
5 ĥ0F 0

k 1 ĥ0N0
L 1 ĥ0N0

S 2 ĥ0 (bu � =h)0, (3)

where primes indicate anomalies from the mean of the

108 3 108 box centered around a TC. As convection

organizes and the TC forms, the convecting areas be-

come moister and the surrounding nonconvecting areas

become drier. This is manifest as an increase in the

spatial variance of ĥ computed over a box surrounding

the developing storm.1 Each of the terms on the right-

hand side of Eq. (3) measures the contribution of a

feedback to the increase in ĥ variance; a positive feed-

back indicates that the processes amplifies ĥ anomalies,

such as enhanced surface fluxes in an area of already

moister than average air. In idealized simulations, the

moist static energy variance always increases as the TC

forms and intensifies (Wing et al. 2016), but this does not

necessarily have to generalize to more realistic simula-

tions (or nature). We find that the moist static energy

variance increases with TC intensification in the climate

model simulations (see sections 4d and 4e, and the ap-

pendix), which provides empirical justification for our

analysis methodology.

We calculate each term in the two budgets at each grid

point in the box following the tracks of each simulated

TC. We then composite over the simulated TCs in two

different ways:

1) a life cycle composite, where all snapshots at the

same time relative to the time of lifetime maximum

intensity (LMI) of each TC are averaged together;

and

2) an intensity-bin composite, where all snapshots in

which the TC has intensity in a given range are av-

eraged together.

In the life cycle composite, we examine times prior to

the LMI in 6-h increments, and go backward in time

until the composite contains less than 25% of the total

number of TCs (so that the composite is a representative

sample; note that the lifetime varies from storm to

storm). This allows us to assess how different processes

are contributing to the formation and intensification of

the composite TC in each model as it moves through its

life cycle, and can be compared to similar analysis for

idealized TCs simulated with explicit convection (Wing

et al. 2016). When comparing the different models,

however, the composite intensity may be quite different

at the same life cycle stage, which may contribute to a

feedback being stronger or weaker. This motivates the

use of the intensity-bin composite, following Kim et al.

(2018), in which the model-to-model comparison is made

using TC snapshots at the same intensity. Only TC snap-

shots up until the time of the LMI of a given storm are

included in the composite. The intensity bins used for this

composite analysis and the number of snapshots in each

bin are given in Table 3.

4. Results

a. General characteristics of TC simulation

As an overview of the TC climatology in the six sim-

ulations we examine, the genesis positions for the

tracked TCs in each model, and in the best-track ob-

servational data,2 is shown in Fig. 1. Five years of TC

1While both temperature and moisture variability contribute to

the spatial variance of ĥ, the moisture contribution is dominant

(not shown).

2 Tracks in the NorthAtlantic and easternNorth Pacific are from

the National Hurricane Center (Landsea and Franklin 2013), and

tracks in other basins are from the Joint Typhoon Warning Center

(Chu et al. 2002).
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genesis positions, from 1995 to 2000, are shown for each

model and for observations. These are not the same

years that are analyzed in detail in subsequent sections

of this paper and are only meant to give an indication of

what the TC distribution in these models looks like.

While all models have reasonable spatial distributions

and genesis frequency of TCs, there are large differences

between them and clear biases compared to the obser-

vations. Many of the models struggle to accurately

simulate the genesis distribution in the North Atlantic,

for example. Overall, HiRAMand FLOR form themost

TCs, which is also true in the two years of data we an-

alyze in detail (Table 2). Note that it is expected that

CAM-SE generates few TCs outside of the Atlantic

because the high-resolution region is confined to only

that basin.

The distribution of lifetimemaximum intensity for the

simulated TCs in eachmodel is shown in Fig. 2a, for only

the two years that we analyze in detail (see Table 2), and,

for CAM-SE, only for TCs in the North Atlantic. The

observed LMI distribution from 1995 to 2000 is also

plotted in Fig. 2a, for reference. The distribution of in-

tensity at each snapshot along the TC track up until the

time of LMI is shown in Fig. 2b; these are the data used

for the intensity-bin composite. CAM-SE and CAM-FV

simulate significantly stronger storms than the other

four models, as expected due to their finer grid spac-

ing. CAM-SE has a greater likelihood of simulating

storms at the high-intensity tail of the distribution than

CAM-FV, consistent with Reed et al. (2015), although

the mean LMI over all storms is higher in CAM-FV.

However, resolution is not the only source of intermodel

spread in intensity. The TCs in HiRAM are noticeably

stronger than those in AM2.5, FLOR, and GEOS,

despite those models having similar resolution. All

the models have a low-intensity bias compared to the

best-track observations (dashed line in Fig. 2a). Only a

few of the models show evidence of the observed bi-

modal distribution of intensity, where the secondary

peak in LMI is associatedwith storms that undergo rapid

intensification (Lee et al. 2016).

The multiple tracking algorithms used across the

simulations could contribute to these differences. Cur-

sory analysis found minimal differences in TC statistics

in the CAM-SE and CAM-FV simulations, limited to

weaker storms, when applying both the Zhao et al.

(2009) and TempestExtremes algorithms to the same

dataset (not shown). We performed more in-depth

analysis (repeating all calculations described in sub-

sequent sections, shown in the online supplemental

material) for the case in which the GFDL tracking al-

gorithm (used for AM2.5 and FLOR; Murakami et al.

2015; Harris et al. 2016) was also applied to HiRAM

(cyan curve in Fig. 2, referred to as HiRAM-G). When

applied to the HiRAM simulation, the GFDL algorithm

yields weaker TCs than the HiRAM (Zhao et al. 2009)

algorithm does (blue curve in Fig. 2). We speculate

that this is because the Murakami et al. (2015) im-

plementation of the Harris et al. (2016) algorithm has

less strict wind speed conditions for detecting TCs than

does the HiRAM algorithm, allowing the GFDL algo-

rithm to detectmoreweaker TCs, and to track those TCs

for longer, which impacts the likelihood of observing

any individual intensity (note that for an individual TC

snapshot at the same time and location, the two algo-

rithms yield the same intensity). Importantly, we find

that the sensitivity to tracking algorithm does not cause

any significant differences in the results of our moist

static energy variance budget analysis. Some of the

terms in the moist static energy variance budget have

slightly smaller values in HiRAM-G than in HiRAM

(shown in the supplemental material), but this does not

TABLE 3. TC intensity bins and number of snapshots per bin.

Bin Intensity range (m s21) HiRAM AM2.5 FLOR CAM-FV CAM-SE GEOS

1 6 # Vm , 9 0 4 5 0 3 254

2 9 # Vm , 12 0 142 154 1 15 504

3 12 # Vm , 15 41 413 512 25 72 721

4 15 # Vm , 18 431 628 736 246 131 944

5 18 # Vm , 21 630 667 994 673 173 524

6 21 # Vm , 24 540 645 884 935 184 247

7 24 # Vm , 27 440 435 543 808 154 110

8 27 # Vm , 30 306 266 256 604 119 74

9 30 # Vm , 33 236 145 126 488 88 23

10 33 # Vm , 35 92 49 47 232 59 9

11 35 # Vm , 38 125 20 24 272 60 12

12 38 # Vm , 41 102 8 3 239 45 3

13 41 # Vm , 44 84 3 4 167 49 0

14 44 # Vm , 47 43 4 0 102 31 0

15 47 # Vm , 50 9 0 0 101 32 0
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change the comparison to the other models or any of our

conclusions.

b. Moist static energy budget

We first examine the evolution of the moist static

energy budget over the composite TC life cycle [Eq. (2)].

Each term in the moist static energy budget composited

48h prior to the LMI of the simulated TCs is shown, for

the CAM-FV simulation, in Fig. 3. The signature of the

TC can be easily seen in the spatial distribution of col-

umn moist static energy, which is larger near the TC

center due to the warm, moist air there (Fig. 3b). The

moist static energy of the composite TC generally in-

creases as it intensifies toward its LMI, as can been seen

in an animation of the evolution of the moist static en-

ergy budget with time over the composite TC life cycle

(found in the supplemental material), and in the positive

tendency of ĥ in the vicinity of the TC (Fig. 3c). The

column radiative flux convergence is generally negative

(cooling) and thus a sink of moist static energy. At this

particular time, however, it is actually slightly positive

(indicating net column radiative heating) in the vicinity

of the TC (Fig. 3d), which reflects the influence of

the moist air and thick cloud shield associated with the

TC. The surface enthalpy fluxes are positive, and are

therefore a source of moist static energy (Fig. 3e). They

are larger in the vicinity of the TC because of the larger

surface winds there. The advection ofmoist static energy

is generally negative and downgradient, although since

this term is calculated as a residual we cannot be certain

that it is entirely and only representing advection

(Fig. 3f). These relationships are also found in the other

FIG. 1. Genesis positions for tropical cyclones (a)–(f) in each model and (g) in the best-track observational data,

for 1995–2000. Data from these five years are plotted because they are the years for which the long-term model

simulations overlap with each other. For the models, the genesis position is the latitude and longitude of the first

point in the track, as determined by the tracking algorithm.
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models; equivalent figures and animations for the other

five models are provided in the supplemental material.

c. Moist static energy variance budget

As noted above, the moist static energy of the TC

increases as the TC forms and intensifies; in particular, it

increases relative to the moist static energy of the sur-

rounding environment. This should be reflected in an

increase in the spatial variance of the moist static en-

ergy. To quantify the feedbacks that may contribute to a

change in the spatial variability of ĥ, we now examine

the ĥ variance budget over the composite TC life cycle

[Eq. (3)]. Each term in the ĥ variance budget compos-

ited 48h prior to the LMI of the simulated TCs is shown,

for the CAM-FV simulation, in Fig. 4. As could be in-

ferred from Fig. 3, ĥ is anomalously high in the vicinity

of the TC. The tendency of ĥ02 is noisy but positive near

the TC center (Fig. 4c). Both the radiative and surface

flux feedbacks are positive, indicating that both of these

processes contribute to the amplification of ĥ anomalies.

The radiative feedback is positive throughout the do-

main, but largest near the center of the TC where the

anomalously high ĥ is coincident with reduced column

radiative cooling associated with thick cloud cover

(Fig. 4d). The surface flux feedback is most positive near

the TC eyewall, where the largest surface winds (which

enhance the surface fluxes) are found and where ĥ is

large; it is near zero at the center of the TC because the

winds are calmer there (Fig. 4e). There are some areas in

the environment away from the TC where the surface

flux feedback is slightly negative (tending to damp ĥ

anomalies). This is because surface enthalpy fluxes de-

pend both on surface wind speed and air–sea enthalpy

disequilibrium, and the two influences generally oppose

each other (Wing et al. 2016). The advective term is

negative, indicating that advection of ĥ damps ĥ anom-

alies (Fig. 4f). Equivalent figures and animations for the

other five models are provided in the supplemental

material.

Across all models, although to a lesser extent in

FLOR and GEOS, the surface flux feedback is positive

near the TC and becomes larger as the TC approaches

the LMI (Fig. 5, right column). The radiative feedback is

also positive across all models but, with the exception of

GEOS, is smaller than the surface flux feedback. It also

generally increases with intensification toward the LMI,

though the relative rate of increase is slower than that

of the surface flux feedback (Fig. 5, left column). The

feedback terms generally increase with intensification

because the anomalously high values of moist static

energy, surface fluxes, and cloud-induced reduction in

radiative cooling increase as the TC develops and ma-

tures. While the azimuthal mean structure of these

feedback terms is similar across all models, there are

FIG. 2. Probability density function of (a) LMI and (b) the intensity at each snapshot along the TC track up until

the time of LMI, for the two years of TCs that are analyzed in each model (see Table 2), excluding snapshots

poleward of 308 and, in CAM-SE, excluding storms outside of the North Atlantic. ‘‘HiRAM-G’’ (in cyan) indicates

TCs in the HiRAM simulation that have been identified and tracked using the GFDL tracking algorithm (the same

as used for AM2.5 and FLOR; Murakami et al. 2015). The black dashed line in (a) shows, for reference, the

observed distribution of LMI from the best-track data, for storms of at least tropical storm strength (LMI $

17m s21) from 1995 to 2000, and equatorward of 308. The PDF in (a) is smoothed while the PDF in (b) uses the

unsmoothed 3m s21 bins from Table 3 (extended to 93m s21).
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notable differences in their strengths (e.g., Fig. 5f). The

models that produce stronger storms, both overall and

at the time of the composite, have stronger feedbacks

(CAM-SE, CAM-FV, and HiRAM), especially with re-

gard to the surface flux feedback.

One possible explanation for the differences in the

magnitudes of feedbacks across the models is that they

may simply have different absolute values of moist static

energy and its variability (which can be seen in the

versions of Figs. 3 and 4 for the other models in the

FIG. 3. Composite 48 h prior to LMI of the moist static energy budget of all TCs in CAM-FV. (a) The composite

meanTC intensity (blue line) and number of storms in the composite (red line) as a function of time relative to LMI;

the star indicates the time at which the rest of the panels are valid. The (b) column-integrated MSE, (c) MSE

tendency, (d) column radiative flux convergence, (e) surface enthalpy flux, and (f)MSE advection are also shown as

a function of latitude and longitude relative to the TC center.
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supplemental material). To adjust for this, we normalize

the feedback terms by the value of the box average ĥ

variance at a given time, and then perform the com-

posite. An example of this analysis, for the azimuthal

mean of the composite of normalized radiative and

surface flux feedbacks 96, 72, 48, and 24 h prior to LMI,

is shown in Fig. 6 (latitude/longitude spatial plots at

these and other times are shown in movies in the sup-

plemental material). The differences between models

remain, particularly in the surface flux feedback. There

are minimal model–model differences in the radiative

feedback, which indicates that the radiative feedback is

FIG. 4. Composite 48 h prior to LMI of the moist static energy variance budget in CAM-FV. (a) The composite

meanTC intensity (blue line) and number of storms in the composite (red line) as a function of time relative to LMI;

the star indicates the time at which the rest of the panels are valid. The (b) column-integrated MSE anomaly from

the box mean, (c) MSE variance tendency, (d) radiative feedback, (e) surface flux feedback, and (f) advective

feedback are also shown as a function of latitude and longitude relative to the TC center.
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FIG. 5. Azimuthal mean of composite of (left) radiative and (right) surface flux feedbacks (a),(b) 96, (c),(d) 72,

(e),(f) 48, and (g),(h) 24 h prior to LMI, in CAM-SE (red), CAM-FV (orange), HiRAM (blue), AM2.5 (purple),

FLOR (red), and GEOS (black) simulations. Note that the axes are different for the left and right columns.
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FIG. 6. Azimuthal mean of composite of normalized (left) radiative and (right) surface flux feedbacks (a),(b) 96,

(c),(d) 72, (e),(f) 48, and (g),(h) 24 h prior to LMI, in CAM-SE (red), CAM-FV (orange), HiRAM (blue), AM2.5

(purple), FLOR (red), andGEOS (black) simulations. The feedbacks are normalized by the box-mean ĥ variance.

Note that the axes are different for the left and right columns.
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relatively more important in the models with weaker

surface flux feedbacks and weaker storms (AM2.5,

FLOR, and GEOS).

d. Box-average variance budget

The above analysis shows the contribution of different

terms to the ĥ variance for the azimuthal mean as a

function of distance from the TC center, but it is also

informative to examine the box-average budget. This is

computed, for each TC and track point, by averaging the

squared ĥ anomalies and each term in the variance

budget over the box surrounding the TC, and then

taking a composite over the same time relative to LMI.

The composite box-average ĥ variance generally in-

creases as the LMI is approached (Figs. 7a–f), although

individual TCs do not always have a monotonic increase

in ĥ variance over their life cycle (in part because indi-

vidual TCs do not always have a monotonic increase in

intensity). This provides evidence for the relevance of

the ĥ variance budget for TC intensification. We find

that an increase in the box-average ĥ variance with TC

formation and intensification is more robust in the

stronger TCs. Therefore, for the calculation of the life

cycle composite box-average ĥ variance budget, we re-

strict our analysis to the storms whose LMI is in the

upper quartile of the LMI distribution (Fig. 7).

The evolution of the terms in the box-average ĥ var-

iance budget throughout the TC life cycle is qualitatively

similar across the models and similar to the behavior of

an idealized TC in cloud-resolving simulations (Wing

et al. 2016). The surface flux and longwave radiative

feedback are the two main contributors to increases in

box-average ĥ variance. Early in the TC life cycle as the

TC is forming, the two have similar magnitudes, but as

the TC develops and intensifies toward its LMI, the

surface flux feedback increases substantially (as a result

of the increasing surface wind speed, which drives higher

surface fluxes near the TC). This is apparent in the

HiRAM, CAM-SE, and CAM-FV simulations (which

have the strongest TCs) and consistent with the results

of Wing et al. (2016). In the other models, the surface

flux feedback increases only slightly, if at all. In FLOR

and GEOS (which have the weakest TCs), the box-

average surface flux feedback is actually smaller than

the longwave radiative feedback throughout the com-

posite TC life cycle. These results indicate that not only

do the values of the feedback terms differ frommodel to

model, but so does the relative importance of a given

feedback compared to the other feedbacks. Across all

models, the shortwave feedback is very small (so the

radiative feedback is dominated by spatial variability in

the longwave cooling) and the advection (residual) term

is negative.

As measured by the mean LMI over all TCs in an

individual model, the models that simulate more intense

storms have larger box-average surface flux feedbacks

(Fig. 8; shown for the composite 48 h prior to LMI, but

the results are similar at other times). The box-average

radiative feedback, on the other hand, does not vary

much across models. It follows that the models with

stronger storms have a higher ratio of composite mean

box-average surface flux feedback to radiative feedback

(Fig. 8b). That is, while both surface flux and radiative

feedbacks contribute to increased ĥ variance and TC

development in all models, the surface flux feedback

contributes relatively more in the models with stronger

storms. This points to the importance of spatially vary-

ing surface fluxes (primarily driven by wind speed vari-

ability) for the simulation of TCs.

We note in passing that one potential limitation of this

analysis is that the same sized-box was used for all six

models and for all TCs in each model. Unlike idealized

simulations where there is one TC in a homogenous

domain (Wing et al. 2016), in these realistic simulations,

a box size must be chosen such that it is large enough to

contain the TC as well as the environment surrounding

it, but not so large that it contains other disturbances.

While a larger or smaller box may be more appropriate

for larger or smaller TCs (and the minimum TC size is

limited by the grid resolution) we found a fixed 108 3
108 box size to be a good compromise.

e. Composite over intensity bins

While the life cycle composite discussed in sections

4b–4d is useful for examining how different feedbacks

contribute to the increase in ĥ variance throughout the

TC life cycle in each model, the difference in feedback

magnitudes across themodels could also be an artifact of

the fact that although the composite is taken at the same

stage in the TC life cycle, the intensities at that time are

different (compare, for example, the red line in the first

row of Fig. 7). The surface flux feedback explicitly de-

pends on the TC intensity because of the dependence of

surface fluxes on surface wind speed. Therefore, we also

analyze an intensity-bin composite, as described in

section 3.

Despite being compared at the same TC intensities,

there are differences in the moist static energy and its

sources and sinks across the models (Figs. 9a–c). GEOS

stands out by having noticeably smaller values of moist

static energy overall and stronger radiative cooling

(more negative) in the environment around the TC

(Figs. 9d–f). The other models look fairly similar to

each other, in terms of the radial structure, with the

biggest difference being in the strength of the surface

fluxes near the center of the TC. CAM-SE has the
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FIG. 7. Composite of the box-averageMSE variance budget in the (a),(b) CAM-SE,

(c),(d) CAM-FV, (e),(f) HiRAM, (g),(h) AM2.5, (i),(j) FLOR, and (k),(l) GEOS

simulations. (left) As a function of time relative to LMI, the composite mean TC in-

tensity (red line; right axis) and the box-average MSE variance (blue line; left axis),

scaled by 1014. (right)As a function of time relative toLMI, the surface flux (green line),

longwave (blue line), shortwave (red line), and advective (pink line) feedbacks. The

composite is over all TCs that have a LMI in the upper quartile of the LMI distribution.
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strongest surface fluxes, followed by CAM-FV, HiRAM,

AM2.5, GEOS, and then FLOR (Figs. 9h–j). There are

also slight differences in the radiative cooling; the reduced

radiative cooling associated with thick cloud cover over

theTC is spread over a larger area inHiRAM,AM2.5, and

FLOR (Figs. 9d–f). This could be related to the coarser

resolution of these models compared to CAM-SE and

CAM-FV.

The different spatial structures of moist static energy,

radiative cooling, and surface fluxes in Fig. 9 are re-

flected in model–model differences in the feedback

terms in the ĥ variance budget, shown for three different

intensity bins in Fig. 10. The structure of ĥ02 and the

feedback terms is similar across the intensity bins, but

the magnitude generally increases with intensity. The

main conclusion from Fig. 10 is that even when com-

posited over the same intensities, there are notable dif-

ferences in the strength of the azimuthal-mean surface

flux feedback between models. The surface flux feed-

back near the center of the TC is strongest in CAM-SE,

CAM-FV, and HiRAM, which are the models that

simulated the strongest TCs, followed by AM2.5, GEOS,

and FLOR (Figs. 10h–j). The interpretation of this re-

sult is that, at a given intensity, certain models have a

stronger surface flux feedback than others, which favors

further amplification of ĥ anomalies and further in-

tensification of the TC, to the extent that ĥ and surface

winds are related. With the exception of GEOS, which

has a notably strong radiative feedback, the radiative

feedbacks are similar across the models (Figs. 10d–f).

These results are unchanged when each term has been

normalized by the box-mean ĥ (shown in the supple-

mental material).

The value of the intensity-bin composite is made clear

in Fig. 11, which shows the box-average ĥ variance and

surface flux and radiative feedbacks composited over

each 3ms21 intensity bin. There is a clear tendency for

the ĥ variance to be higher at higher wind speeds, al-

though the absolute value of ĥ variance differs across

models, especially in GEOS (Fig. 11a). This provides

additional evidence that ĥ variance is a good proxy for

TC intensity. Further, the rate of increase of ĥ variance

with intensity is similar across all models, indicating that

the models have a similar ‘‘efficiency’’ in converting ĥ

variance increases to intensification and that the inter-

model spread in intensity is instead due to differences in

the strengths of the feedbacks that are a source of ĥ

variance. There is a strong dependence of the surface

flux feedback on the wind speeds over which it is com-

posited, with the higher-intensity bins having surface

flux feedbacks that are 2–3 times stronger than the

lower-intensity bins (Fig. 11b). The radiative feedback,

on the other hand, is only weakly dependent on the wind

speed over which it is composited (Fig. 11c). The surface

flux feedback in CAM-SE and CAM-FV is similar

across most intensity bins, while the radiative feedback

in CAM-FV becomes larger above the 30ms21 bin. This

reflects the fact that the overall TC intensity distribu-

tions in CAM-SE and CAM-FV are similar; while

CAM-FV has an LMI distribution that is shifted to-

ward stronger storms (Fig. 2a), CAM-SE has an overall

higher probability of TC snapshots at higher intensities

FIG. 8. (a) The composite of the box-average surface flux (asterisks) and longwave radiative feedback (open

circles) at 48 h prior to LMI for each model as a function of that models mean LMI. (b) The ratio of the composite

box-average surface flux and radiative feedbacks for eachmodel.ModelmeanLMI is defined as the average LMI of

all TCs that have LMI in the upper quartile of the LMI distribution. In all panels, the models are CAM-SE (red),

CAM-FV (yellow), HiRAM (blue), AM2.5 (purple), FLOR (green), and GEOS (black). The composite is over all

TCs that have a LMI in the upper quartile of the LMI distribution.
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(Fig. 2b). Between 20 and 35m s21, AM2.5 has a notably

stronger surface flux feedback than FLOR (Fig. 11a);

recall that AM2.5 simulates more intense TCs than

FLORdoes (Fig. 2).Above the 25ms21 bin, HiRAMhas

a significantly stronger surface flux feedback thanAM2.5,

suggesting that this allows the TCs in HiRAM to even-

tually become stronger than those inAM2.5. GEOS is a

bit of an outlier; while the relatively weak surface flux

feedback is consistent with the fact that GEOS simu-

lates weaker TCs, the radiative feedback and ĥ variance

itself are much stronger than in the other models.

These results are summarized in Fig. 11d, which

shows both the box-average surface flux and radiative

feedbacks composited over the 24–27m s21 bin in

each of the models. There is a clear tendency for the

box-average surface flux feedback to be larger in the

models that simulate TCs with higher mean LMI,

while the radiative feedback does not vary much

between models.

5. Discussion

There are several informative comparisons that can

be made by comparing individual pairs of models in the

set of six examined here. CAM-SE and CAM-FV differ

primarily in their dynamical core, which has been shown

FIG. 9. Azimuthal mean of intensity bin composite of (a)–(c) column-integrated MSE (Jm22), (d)–(f) column radiative flux conver-

gence (Wm22), and (g)–(i) surface fluxes (Wm22) in the (left) 15–18m s21 bin, (center) 24–27m s21 bin, and (right) 33–35m s21 bin, in

the CAM-SE (red), CAM-FV (orange), HiRAM (blue), AM2.5 (purple), FLOR (red), and GEOS (black) simulations.
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to affect simulated TC intensity and frequency, with the

spectral element core producing stronger TCs (Reed

et al. 2015). In the simulations we examined, the dis-

tribution of LMI in CAM-SE was wider than that in

CAM-FV, with a higher relative frequency of both weak

and strong storms (Fig. 2a). However, the comparison

between CAM-SE and CAM-FV presented here is not

an apples-to-apples comparison because the CAM-SE

distribution includes only storms in the North Atlantic

(which may have weaker storms than other basins, such

as the western North Pacific), includes different years

than the CAM-FV simulation, and uses a different

tracking algorithm. When TCs in the North Atlantic in

1996–97 are analyzed for both CAM-SE and CAM-FV,

the TCs in CAM-SE are found to reach higher intensity

more frequently (Y. Moon et al. 2019, manuscript sub-

mitted to J. Climate), consistent with Reed et al. (2015).

We showed that CAM-SE tends to have a stronger sur-

face flux feedback than CAM-FV near the center of the

TC within 48h of the time of LMI and that, when storms

in the upper quartile of the LMI distribution are consid-

ered, the box-average surface flux feedback is also larger

in CAM-SE. The surface flux feedback was also found to

be slightly stronger in CAM-SE than CAM-FV when

considering a composite at the same intensity.

HiRAM and AM2.5 differ only in their choice of

convection scheme, and HiRAM simulates notably

stronger TCs than AM2.5 (Fig. 2). Kim et al. (2018)

FIG. 10. Azimuthal mean of intensity bin composite of (top)MSE variance (J2 m24), (d)–(f) radiative feedback (J2 m24 s21), and (g)–(i)

surface flux feedback (J2 m24 s21) in the (left) 15–18m s21 bin, (center) 24–27m s21 bin, and (right) 33–35m s21 bin, in theCAM-SE (red),

CAM-FV (orange), HiRAM (blue), AM2.5 (purple), FLOR (red), and GEOS (black) simulations.
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linked this to both larger surface fluxes and greater

rainfall amounts (and therefore diabatic heating) in the

inner-core regions of TCs in HiRAM compared to

AM2.5. This is consistent with our analysis, in which the

surface flux feedback was notably stronger in HiRAM

than in AM2.5, both at the same stage in the TC life

cycle and at the same intensity. The radiative feedback

was found to be slightly stronger in HiRAM, although

the difference was small compared to the difference in

surface fluxes.

AM2.5 and FLOR differ only in that FLOR is a

coupled ocean–atmosphere model, while AM2.5 is an

atmosphere-only model. AM2.5 simulates stronger TCs

than FLOR (Fig. 2), and this too appears to be linked

to a stronger surface flux feedback in in AM2.5. Ocean

coupling is known to reduce TC intensity, because the

cold wake generated by TC-driven upwelling is a nega-

tive feedback on the TC (e.g., Lloyd and Vecchi 2011;

Zarzycki 2016; Zarzycki et al. 2016; Scoccimarro et al.

2017). Here, we show explicitly that ocean coupling also

reduces the surface flux feedback, as defined in the ĥ

variance framework. This is significant because, in the

context of convective self-aggregation, these surface flux

feedbacks have only been examined in simulations with

fixed SST (e.g., Wing and Emanuel 2014; Coppin and

Bony 2015;Wing andCronin 2016). The reduction in the

FIG. 11. (a) Box-averageMSE variance and (c) surface flux and (d) radiative feedback terms in theMSE variance

budget composited over intensity bins. The x axis in (a), (c), and (d) indicates the mean intensity in each bin, for

eachmodel. (b) The box-average surface flux (asterisk) and radiative (open circle) feedback terms composited over

the 24–27m s21 bin [indicated by the dashed lines in (c) and (d)] for each model, as a function of the mean LMI of

simulated TCs in that model.

6088 JOURNAL OF CL IMATE VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/04/22 07:02 PM UTC



surface flux feedback with ocean coupling is consistent

with studies that have found that ocean coupling delays

self-aggregation (Hohenegger and Stevens 2016).

Why would the surface flux feedback differ across

models? In general, the sign and magnitude of the sur-

face flux feedback depend on the spatial covariability of

column-integrated moist static energy and surface

fluxes. The spatial variability of surface fluxes in turn

depends on the spatial variability in surface wind speed

and air–sea enthalpy disequilibrium. Therefore, this

feedback could be larger in a given model because of

1) higher moist static energy near the TC and/or lower

moist static energy in the surrounding environment,

2) larger values of surface fluxes near the center of the

TC because of stronger winds or larger air–sea disequi-

librium (although the latter is unlikely to be large near

the center of the TC), or 3) better alignment between the

location of the high values of surface fluxes (usually near

the strongest winds) and the location of highest moist

static energy. Even when evaluated at the same in-

tensity, the overall structure of the TC wind field may be

different across different models. Differences in the

representation of boundary layer processes or frequency

of coupling to the surface could lead to different surface

fluxes, and differences in the representation of moist

convection could lead to different patterns of humidity.

With regards to CAM-SE and CAM-FV, Fig. 9 in-

dicates that the surface fluxes themselves are larger near

the TC center in CAM-SE. Y. Moon et al. (2019, man-

uscript submitted to J. Climate) found that this is mostly

due to a difference in the latent heat flux, and that this

was mostly due to a larger air–sea enthalpy disequilib-

rium in CAM-SE. It is not clear what about the different

dynamical cores could cause this difference, but one

possibility is a difference in how the physics–dynamics

coupling is configured. More generally, differences in

divergence damping have also been proposed as a rea-

son for the sensitivity of TC simulation to dynamical

core (Zhao et al. 2012).

GEOS, which has similar horizontal resolution as

HiRAM, AM2.5, and FLOR, simulates the weakest

storms and the weakest surface flux feedback compared

to other models when compared at the same intensity.

But GEOS has a larger (more positive) radiative feed-

back than the other models, both when compared at the

same intensity and at the same stage in the TC life cycle–

which is a difference in the opposite direction of one that

would explain the weaker storms. We speculate that the

difference in radiative feedback originates from details

in the convection and cloud schemes (such as cloud

lifetimes and detrainment) or possible mean state dif-

ferences, but an in-depth investigation is beyond the

scope of this study. We also note that, when the 15.2ms21

threshold is applied, GEOS has many fewer storms than

the other models (and observations). This is consistent

with Lim et al. (2015), who found that realistic numbers

of TCs were difficult to achieve with 0.58 grid spacing

without modifying the values for TC detection.

The life cycle composites (sections 4c and 4d) also

indicate that, in TCs simulated by high-resolution

GCMs, the radiative feedback is at least as important

as the surface flux feedback in the early stages of TC

development, and in some models, it remains as im-

portant throughout intensification to LMI. This result

adds to a growing body of evidence on the importance of

radiation in TC formation, intensification, and structure

(Fovell et al. 2010; Bu et al. 2014; Melhauser and Zhang

2014; Nicholls 2015; Navarro and Hakim 2016; Tang and

Zhang 2016; Fovell et al. 2016; Wing et al. 2016; O’Neill

et al. 2017; Bu et al. 2017). It is consistent with the cloud-

resolving model results of Wing et al. (2016), who

found a similar role for the radiative feedback in the

evolution of a spontaneously generated TC in radiative-

convective equilibrium simulations, and found that

removal of radiative feedbacks inhibits or significantly

delays the onset of genesis. The positive radiative

feedbacks diagnosed in this study result from the direct

effect of differential heating between the area of deep

convection in the developing TC and the surrounding

drier environment, which acts to favor ascent and

moistening in the already moist area. This promotes

clustering of convection and continued moistening of

the atmosphere, both of which further the formation of a

tropical cyclone. The differential heating can also in-

directly favor TC formation by the generation of a

circulation response (Nicholls 2015; Muller and Romps

2018), although this is not explicitly quantified by our

ĥ variance budget diagnostic. Our results indicate that

it is specifically the variability in longwave radiation

due to clouds (Fig. 7) that drives the positive radiative

feedback.

6. Conclusions

We have developed and applied process-oriented di-

agnostics utilizing budgets of column moist static energy

and the spatial variance of columnmoist static energy to

tropical cyclones in six high-resolution climate models.

These diagnostics allow us to quantify different feed-

backs related to how convection, moisture, clouds, and

related processes are coupled.

We found that the general evolution of themoist static

energy variance budget along the composite TC life

cycle is qualitatively similar to that found in ideal-

ized cloud-resolving model simulations. The box-average

moist static energy variance is higher at higher wind

15 SEPTEMBER 2019 W ING ET AL . 6089

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/04/22 07:02 PM UTC



speeds, both in the life cycle and intensity-bin composites.

Surface flux and radiative feedbacks both contribute pos-

itively, and fairly equally, to an increase in moist static

energy variance in the early stages of TC formation and

intensification. As the TC nears its lifetime maximum in-

tensity, the surface flux feedback increases beyond the

magnitude of the radiative feedback (which is dominated

by longwave cloud effects) in most, though not all models.

At the same point in the TC life cycle, the models that

simulate stronger storms have stronger surface flux feed-

backs, while the radiative feedback is more consistent

across models. This indicates that the radiative feedbacks

are relatively more important to TC development in

models with weak storms. The difference in surface flux

feedback across the models is robust even when we con-

sider composites over the same intensity.

In particular, CAM-SE and CAM-FV simulate the

strongest storms and have the strongest surface flux

feedbacks, and are even slightly different from each

other despite the only difference being the dynamical

core. HiRAM has notably stronger storms and stronger

surface flux feedbacks than do AM2.5 or FLOR, despite

all three models being at the same resolution and using

same dynamical core—indicating the importance of

physics parameterizations, especially the convection

scheme, as has also been noted by other studies. AM2.5

has stronger storms and a stronger surface flux feedback

than FLOR, indicating that ocean coupling reduces the

strength of the surface flux feedback. GEOS has the

weakest storms and weakest surface flux feedback, but,

curiously, a stronger than average radiative feedback.

The intermodel spread in surface flux feedbacks re-

sults from a difference in the spatial covariability in

moist static energy, surface wind speed, air–sea dis-

equilibrium, and surface enthalpy fluxes between the

different models, which is linked to the model repre-

sentation of the spatial structure of the TC wind and

moisture field. Overall these results indicate that the

representation of the interaction of spatially varying

surface fluxes with the developing TC is partially re-

sponsible for intermodel spread in TC simulation, in

which stronger variability of surface fluxes between the

TC core and its surroundings leads to stronger TCs. Our

results also indicate that the radiative feedback con-

tributes to TC development across all models, especially

at weaker intensities or in earlier stages of development.

These results show that the moist static energy vari-

ance budget is a useful tool for examining tropical cy-

clone intensification in models, with links to the actual

physical processes responsible for model simulation of

TCs. However, while it is able to distinguish between

models, there does not yet exist an observational

‘‘reference’’ version of this diagnostic, so it is unknown

which models’ representation of surface flux and radi-

ative feedbacks is ‘‘correct.’’ Creating a reference di-

agnostic from observations of TCs, as well as applying

this diagnostic to a broader range of models, will be the

subject of future work.
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APPENDIX

Details of Moist Static Energy Budget Formulation

a. Column integral

We perform our analysis on model levels using the 4D

varying pressure calculated using the surface pressure

and the appropriate relation for each model’s hybrid

vertical coordinates. Usually, one would perform the

vertical integral of moist static energy (MSE) in

Eq. (A1) using the surface pressure as pb. However, the

surface pressure decreases dramatically over the life

cycle of a tropical cyclone, which complicates the cal-

culation of the column integral and interpretation of the

MSE andMSE variance budgets. When integrating over

the entire column, the column-integrated MSE of the

tropical cyclone decreases as the tropical cyclone
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strengthens due to the decrease in surface pressure—the

integral is simply being performed over less mass.

Therefore, when computing anomalies from the box

average, theMSE anomaly ĥ0 near the tropical cyclone is
negative. As every term in the MSE variance budget

[Eq. (A3)] includes ĥ0 this severely complicates the in-

terpretation of the budget. While still mathematically

correct, it is no longer conceptually useful for relating

covariability of sources and sinks of MSE and regions

favorable for convection throughout the TC life cycle.

We considered two ways in which to rephrase the

MSE and MSE variance budgets to account for the

change in column mass. One option is to write a budget

for column-integratedMSE per unit column mass. If the

column mass is defined as

m5
1

g

ðpb
pt

dp , (A1)

and the column integral per column mass of some vari-

able A is defined as

~A5
1

mg

ðpb
pt

A dp , (A2)

then the MSE budget can be written as

› ~h
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5 ~F
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and an MSE variance budget can be formed as
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These budgets are technically challenging to compute,

as they involve extra terms involving the change in col-

umn mass. The interpretation of the feedback terms in

the MSE variance budget would be more difficult as it

would require thinking through covariability between

columnMSE, sources and sinks ofMSE, and the column

mass. An alternative option that is simpler both tech-

nically and conceptually, and allows easier comparison

to previous work (Wing et al. 2016; Muller and Romps

2018), is to perform the column integral between two

fixed pressure levels, such that the mass over which the

integral is performed is the same at all times and grid

boxes. A similar approach has been taken previously for

MSE budget analysis of theMJO (Sobel et al. 2014). The

MSE variability is then driven by changes in its diabatic

and advective sources and sinks, which is easier to relate

conceptually to favorability for convection. This is the

approach taken in this paper; we set pb to 920hPa. This

value was chosen because it is lower than the vast

majority of surface pressures in the simulated tropical

cyclones we analyze, while still comfortably in the

boundary layer. The minimum surface pressure is never

below 920hPa in AM2.5, FLOR, and GEOS, and is

below 920hPa in less than 0.5% of storm snapshots in

HIRAM, less than 0.3% in CAM-FV, and less than

0.2% in CAM-SE.

As discussed in the main text, it is not obvious that

there must be a strong connection between the spatial

variance of MSE and TC intensity, but empirically the

box-average MSE variance composited over intensity

bins increases strongly with intensity, with a very close

correspondence between the column MSE per column

mass and column MSE integrated from 920hPa (Fig. A1).

When the box-average MSE variance at the time of life-

time maximum intensity (LMI) is considered rather than

the intensity-bin composite, this also has a statistical re-

lationship with the value of LMI (Fig. A2). While there

is scatter in the relationship, the two have a statistically

significant correlation of r 5 0.46, or r 5 0.39 when col-

umn MSE per column mass is used (for the HiRAM

simulation). The consistency between the behavior of

column MSE per column mass and column MSE in-

tegrated from 920 hPa gives us confidence in using the

latter for our analysis methodology.

Specifically, we interpolate themoist static energy to a

fixed pressure level of pb 5 920 hPa, and integrate from

there to the next model level above, and then through

FIG. A1. Box average of MSE variance composited over in-

tensity bins in the HiRAM simulation. The right axis (red line)

shows the MSE variance based on column-integrated MSE in-

tegrated from 920 hPa. The left axis (blue dashed line) shows the

MSE variance based on column-integrated MSE integrated over

the whole column and normalized by the total column mass.
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the rest of the column onmodel levels. We note that this

may introduce some error to the closure of the moist

static energy budget, as the diabatic terms are evaluated

at the surface rather than at 920 hPa. However, other

errors introduced by interpolation onto a regular spatial

grid and temporal sampling already are present and

likely contribute more to budget imbalance. These im-

balances imply that we must be cautious in our in-

terpretation of the budget residual as representing the

advective term, as it may contain some of these other

factors. The rest of the calculation follows the de-

scription in section 3 and Eqs. (A1)–(A3).

b. Neglect of kinetic energy

Equation (2) is only an approximate conservation

equation for MSE [Eq. (1)] because the generation of

kinetic energy is neglected. Equations (1) and (2) are

derived by considering the first law of thermodynamics

phrased with pressure and temperature as the state

variables: cp dT 2 adP 5 Q (Emanuel 1994). It is then

assumed that dP ’ d(gz), which ignores ›P/›t, the ad-

vection of horizontal gradients of P, and the non-

hydrostatic vertical pressure field, which eliminates the

conversion to kinetic energy (Betts 1974). If there are

large horizontal gradients of P, as there are in a tropical

cyclone, this may be inaccurate.

To quantify the effect of this approximation, we com-

pute the tendency of column-integrated kinetic energy

and compare it to the tendency of column-integrated

MSE, in the HiRAM simulation. After compositing

relative to the time of lifetime maximum intensity, we

FIG. A2. Scatterplot of box-average MSE variance at the time of

each storm’s LMI against that storm’s LMI, for the HiRAM sim-

ulation. The right axis (red points) shows the MSE variance based

on column-integrated MSE integrated from 920 hPa. The left axis

(blue points) shows the MSE variance based on column-integrated

MSE integrated over thewhole column and normalized by the total

column mass. A linear regression line is shown for each.

FIG. A3. (a) The tendency of column-integratedMSE (right axis;

red line) and tendency of column-integrated kinetic energy (left

axis; blue line). Each is box averaged and composited over all

storms relative to the time of LMI. (b) The tendency of column-

integratedMSE as a function of latitude and longitude from the TC

center, composited at 48 h prior to LMI. (c) The tendency of col-

umn-integrated kinetic energy as a function of latitude and longi-

tude from the TC center, composited at 48 h prior to LMI. The

HiRAM simulation is shown.
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find that the box-average kinetic energy tendency is

two orders of magnitude smaller than the box-average

MSE tendency (Fig. A3a). When we consider the com-

posite 48 h prior to LMI, the kinetic energy tendency is

at least one order of magnitude smaller than the MSE

tendency on a grid box by grid box basis (Figs. A3b,c).

Note that here the column integral is performed be-

tween 920 hPa and the model top, as it is in our MSE

budget analysis. The small magnitude of the kinetic

tendency relative to the MSE tendency gives us con-

fidence that neglecting it does not seriously impact our

results.
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